Eccentricity Semi-major Axis, a Energy Ellipse 0 <= e < 1 a > 0 E < 0 (Includes Circular) Parabola e = 1 not defined E = 0 Hyperbola e > 1 a < 0 E > 0
Masses in the Solar System Mass (Solar) Mass (kg) k = MG (AU (km/s)2 M(Sun) 1 1.989x1030 887.21 M(Jupiter 1/1047 0.84738 M(Earth) 1/332,946 5.974x1024 0.0026647
Energy per mass | E = - k/(2a) |
Angular Momentum, L, per mass | L = √[k a (1 - e2)] |
Period of planet, P(years) with a in AU | P = a3/2 |
Period | √[a3/k]/(2π) |
Momentum per mass | L = r x v = √[k a(1 - e2)] |
Tisserand Parameter for Planet, p | Tp = ap/a + 2*√[a/ap(1 - e2)] |
Orbital Radius, r versus true anomaly True Anomaly = angle, θ, from perihelion | r = a (1 - e2)/(1 - e cos(θ)) |
Orbital Velocity | v = √(k/a)*(2a/r -1) |
mean velocity (circular) in orbit | vc = √(k/a) = 2πa/P |
Eccentric Anomaly, E | cos(E) = (e + cos(θ))/(1 + e cos(θ)) |
Travel time in orbit (from perihelion) | t - T = P/(2π)(E - e sin(E)) |
Radius of Sphere of Influence Planet, p, relative to the Sun, S | RSOI = ap √[kp/(3 ks)] |
Angle, φ, of the velocity vector relative to circular | tan(φ) = e sin(θ)/[1 + e cos(θ)] |
Created on ... May 29, 2005 - L.Bogan